logo

English
                 

Become a Blockchain Expert in Less Than Four Minutes

 

Editor's note: The blockchain revolution is underway...

And it's fundamentally changing how businesses – and a whole lot more – operate. The changes brought about by blockchain are at least as significant as those brought about by the Internet.

That's why it's critical for you to understand the basics of this technology. It will offer countless investing opportunities in the years ahead... and it will play a central role in future years in how you – and, without question, your children – work, do business, play, and operate in society.

Today's Masters Series comes from Crypto Capital editor Eric Wade. In it, he explains why the blockchain is like a giant Excel spreadsheet, the most important thing you need to keep your bitcoin safe, and what happens "behind the scenes" when you pay with bitcoin...


Become a Blockchain Expert in Less Than Four Minutes

By Eric Wade, editor, Crypto Capital

"Blockchain" is one of those words that has the power to confuse even the smartest people.

And the media hasn't been at all helpful explaining how this technology actually works.

For starters, blockchain is the technology behind cryptocurrencies like bitcoin.

The Bitcoin blockchain allows us to transfer bitcoin person to person (or "peer-to-peer") without any intermediary. When I transfer U.S. dollars to you, we either have to do it in person – with me handing you cash – or through the banking system, which involves me telling my bank to send money to your bank account.

(Bitcoin with a capital "B" refers to the blockchain, whereas bitcoin with a lowercase "b" refers to the cryptocurrency.)

But how does this actually work?

A good analogy is to think of the Bitcoin blockchain as a giant Excel spreadsheet that shows the complete transaction history and location of every bitcoin.

Every 10 minutes, the spreadsheet gets updated as an additional "block" of new transactions is permanently added to the spreadsheet.

Everyone can have their own copy of the spreadsheet. It's completely transparent.

Let's say Jim sends one bitcoin to Sally. When the transaction is processed by the bitcoin network, the spreadsheet is updated. Jim's balance is decreased by one bitcoin, and Sally's is credited one.

But who updates the spreadsheet? And how do we stop people from trying to make false updates to the spreadsheet? What prevents someone from awarding themselves more bitcoin or trying to "double spend" the bitcoin by sending it to two different people at the same time?

All of that is the job of participants on the network called "nodes," which are also known as miners. Nodes are the computers or large computer systems that support the Bitcoin network and keep it running smoothly. Nodes are run by individuals or groups of people who contribute money toward buying powerful computer systems, known as "mining rigs."

Two types of nodes exist – full nodes and lightweight nodes.

Full nodes keep a complete copy of the blockchain ledger (i.e., the giant Excel spreadsheet). This is a record of every single transaction that has ever occurred. This is currently more than 225 gigabytes in size.

Lightweight nodes, on the other hand, only download a fraction of the blockchain. Lightweight nodes are used by most folks as a "bitcoin wallet" for bitcoin transactions. A lightweight node will communicate to a full node when it wants to transact.

So the full nodes (or miners) run the spreadsheet, but how do they keep the spreadsheet synchronized between them all? This is the key, considering the number of people who can run their own full node isn't limited. (See the figure below.)

 

Let's go back to Jim and Sally...

Jim wants to send one bitcoin to Sally.

Sally creates a bitcoin wallet. Anyone can create one in a couple of minutes. When you create your wallet, two pieces of information are created for you...

One is your "public key," which is also known as a public address, or your bitcoin address. It's a string of numbers and letters. Think of it like an account username.

The other is your "private key," which is effectively your bitcoin password, and you need to keep it safe. If you lose it, it means you lose access to your bitcoin. (No centralized entity exists that can recover your password for you. It isn't like if you forget your Facebook password and you have e-mail instructions sent to you to reset it.) More importantly, if someone else gets your private key, they can take your bitcoin.

Sally tells Jim her public key. Jim opens his bitcoin wallet, puts in the instruction to send one bitcoin to Sally's public address, enters in his private key (password) to authorize the transaction, and hits send. (See the figure below.)

 

After a few minutes, Sally checks her wallet again and sees she now has a bitcoin in her wallet. But what's happening behind the scenes?

First, the network (in this case a lightweight node) makes a quick check of the proposed transaction. It checks to see that Jim has enough bitcoin in his account. And it checks if the address Sally provided is a valid bitcoin address.

After the transaction passes those two tests, the transaction gets bundled together by miners with other pending transactions into a "block." The goal of the miners is to verify the block, and add it to the blockchain (i.e., update the spreadsheet).

 

How does a miner get to add a block to the blockchain? This is where brute force mining comes into play. To understand this, we need to touch upon "hashes"...

A "hash value" is a series of numbers and letters strung together that looks something like this: 1gwv7fpx97hmavc6inruz36j5h2kfi803jnhg. A hash value is generated by pushing data through a mathematical formula called a "hash function."

Another way to think of this is like the ingredients for a smoothie and a blender. You take your ingredients (your data), put it through a blender (the hash function), and you get your smoothie (the hash value).

Hashing is a one-way process. When you give me a hash value, I can't turn it back into its original input data, in the same way I can't turn my smoothie back into its original ingredients.

 

When miners are given a block of transactions to try and add to the blockchain, they are using a hash function to try and solve a cryptographic puzzle.

The miners take the new block with all the transactions in it, combine it with a randomly generated number string (called a "nonce"), put it through a hash function, and then get a particular hash value.

The miners are trying to find a hash value that starts with a specific number of zeroes. They will keep trying different nonces until they get the necessary hash value. This trial-and-error computation is shown in Step 1 and Step 2 in the diagram below...

 

All the miners are in a race to find the correct hash value. This is because the miner who finds it (Step 3) will broadcast the correct solution to the network (Step 4), which will verify it is correct.

 

The new block then gets added to the blockchain (Step 5), and the winning miner gets awarded 12.5 bitcoin by the blockchain for his success. (The miner who successfully finds the block also receives all of the fees from bitcoin transactions that were included in that block.)

 

Sally's bitcoin transaction is now recorded in the blockchain. Sally's bitcoin wallet is now credited a bitcoin, and Jim's is debited one.

The mining process then starts over again, with a whole new bunch of transactions bundled into a new block, and the miners all compete again to find the correct hash value.

In the media, bitcoin tends to dominate the headlines when it comes to cryptocurrencies. But Bitcoin itself is just the beginning for blockchain.

Bitcoin's success has shown the world it is possible for independent and fragmented entities (miners) to enable strangers to exchange value with no need for an intermediary. And it can be done in a completely transparent, verifiable, and open way.

Good investing,

Eric Wade

 

Copied from Stansberry Digest, SNUMA WM - September 7, 2019

 

No. Subject Date Author Last Update Views
Notice How to write your comments onto a webpage [2] 2016.07.06 운영자 2016.11.20 18086
Notice How to Upload Pictures in webpages 2016.07.06 운영자 2018.10.19 32214
Notice How to use Rich Text Editor [3] 2016.06.28 운영자 2018.10.19 5803
Notice How to Write a Webpage 2016.06.28 운영자 2020.12.23 43731
8817 일제의 김구 암살 공작과 밀정 [2] 2024.02.19 온기철*71 2024.02.22 78
8816 장개석은 한국에 친중정부가 수립 되게 하려고 임정을 도왔다. [1] 2024.02.17 온기철*71 2024.02.24 88
8815 봄날의 원망 [1] 2024.02.16 정관호*63 2024.02.16 46
8814 내 마음은 가을 달 [1] 2024.02.08 정관호*63 2024.02.14 481
8813 1945년8월15일은 과연 해방이었을까? [2] 2024.02.06 온기철*71 2024.02.07 68
8812 Pearl Buck 과 유일한 [2] 2024.02.02 온기철*71 2024.02.05 86
8811 연꽃 한송이 [1] 2024.02.01 정관호*63 2024.02.01 56
8810 1947 년 Wedemeyer 사절단 방한과 미국의 대한정책 [1] 2024.01.28 온기철*71 2024.02.02 56
8809 東北工程: 동북공정 [7] 2024.01.23 정관호*63 2024.02.06 275
8808 리디아 고, LPGA 개막전서 통산 20승...명예의 전당 눈앞 [2] 2024.01.22 황규정*65 2024.01.22 118
8807 ‘이강인 멀티골’ 한국, 바레인 3-1 제압…아시안컵 산뜻한 출발 [16] 2024.01.15 황규정*65 2024.02.07 79
8806 詠懷古蹟 其五(영회고적 기오) :고적에서 회포를 읊다 5회 제갈랑 편 [1] 2024.01.15 정관호*63 2024.01.17 56
8805 해방정국 정치세력 [1] 2024.01.10 온기철*71 2024.01.12 68
8804 詠懷古蹟 其四(영회고적 4회): 고적에서 회포를 읊다. 4회. 유비 편 [1] 2024.01.07 정관호*63 2024.03.04 79
8803 Happy New Year! [4] file 2023.12.31 조승자#65. 2024.01.16 146
8802 1945-1948년 남한을 통치 했던 미국인들(미군정 요인들) [1] 2023.12.30 온기철*71 2024.01.09 72
8801 除夜 戴復古: 제야 대복고 [4] 2023.12.30 정관호*63 2024.01.07 73
8800 傷春: 상춘 [1] 2023.12.21 정관호*63 2023.12.27 69
8799 Trump will end the American Democracy if he is elected [3] 2023.12.20 온기철*71 2023.12.22 62
8798 당신은 여운형을 아십니까? [3] 2023.12.13 온기철*71 2023.12.14 86